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ABSTRACT

Final Report: Optimization Via Open System Quantum Annealing

Report Title

Many computationally challenging problems can be reduced to Quadratic Unconstrained Binary Optimization (QUBO), which can be solved 
by a quantum evolution from a strong transverse field to a spin glass Hamiltonian (also known as quantum annealing or QA). We have 
examined open system QA, using theoretical and experimental techniques to deepen our understanding of open system QA by situating it in 
the context of related, well studied classical and quantum problems. We have explored and elucidated the significance of tunneling in QA 
with Path Integral Monte Carlo. We have also provided signatures of quantum behavior of QA against closely related simulated annealing 
implementations, analytically, numerically, and experimentally. We have carried out a comprehensive comparison of geometrically-local 
open-system QA and classical solvers for computationally hard problems such as MAX-2-SAT. We have exploited and further developed a 
graph-theoretical mapping between the Ising spin glass partition function and circuit model decision problems, discovered in a previous 
ARO Quantum Algorithms funded project. We have made significant progress on error correction techniques for QA, both theoretically and 
experimentally, and in demonstration of quantum speedup.
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Statement of problems studied: 
 
Main Project Goals: Theoretically, numerically, and experimentally investigate the 
performance of a computational framework based on open system quantum annealing. 
 
Project Description: 
Many computationally challenging problems can be reduced to Quadratic Unconstrained 
Binary Optimization (QUBO), which can be solved by a quantum evolution from a strong 
transverse field to a spin glass Hamiltonian (also known as quantum annealing or QA). 
Closed system QA has been shown to provide quantum speedups for some final Ising-
like Hamiltonian problems. Building upon previous efforts, we have addressed open 
system QA. Our goal was to use theoretical and experimental techniques to deepen our 
understanding of open system QA by situating it in the context of related, well studied 
classical and quantum problems. We have explored and elucidated the significance of 
tunneling in QA with Path Integral Monte Carlo. We have also provided signatures of 
quantum behavior of QA against closely related simulated annealing implementations, 
analytically, numerically, and experimentally. We have carried out a comprehensive 
comparison of geometrically-local open-system QA and classical solvers for 
computationally hard problems such as MAX-2-SAT. We have exploited and further 
developed a graph-theoretical mapping between the Ising spin glass partition function 
and circuit model decision problems, discovered in a previous ARO Quantum Algorithms 
funded project. We have made significant progress on error correction techniques for QA, 
both theoretically and experimentally. Finally, we have worked to demonstrate a genuine 
experimental quantum speedup in open system QA. 
 
Problems studied: 
1. Benchmarking of the D-Wave Two Experimental Quantum Annealer 
[5,18,19,20]. We have been studying the performance of the frist two generations of D-
Wave processors at the USC – Lockheed Martin Quantum Computing Center using 
random Ising spin problems, comparing them against classical exact and heuristic solvers.  
We have also been improving its performance via error correction, and using it as a tool 
study phase transitions in satisfiability problems. We have engineered frustrated 
problems with planted solutions that on the one hand are known to be difficult to solve 
using heuristic classical solvers, but on the other hand have known ground state energies.  
We have shown that unlike the case for easy random Ising problems, experimental 
quantum speedups cannot be ruled out for these carefully designed problems.  
2.  Determining the underlying physics of experimental quantum annealer 
[8,10]. We have developed the theoretical framework required for the incorporation of 
the effects of a decohering environment into finite temperature annealing processes. By 
carefully considering and employing certain approximations, we have come up with an 
open system physical model whose predictions agree very well with the outcome of the 
D-Wave Two quantum annealer. Along the way, we were also able to rule out every 
classical model that has so far been proposed as the underlying physical mechanism 
driving the D-Wave chips.  
3. Characterization of quantum annealers and “quantum signatures” 
[4,7,15,25]. We have devised D-Wave-embeddable Ising toy problems that allowed us, 



based on the output of the device, to distinguish quantum annealing from its classical 
counterparts. By constructing Ising-type problems that exhibit different quantum and 
classical energy landscapes, and subsequently running them on the D-Wave chip as well 
as on a suite of classical models, we were able to detect mechanisms and “quantum 
signatures” of the D-Wave chip.   
We have also developed methods to measure the susceptibility of experimental quantum 
annealers to classical thermal hardness thereby characterizing the “classicality” of 
experimental quantum annealers. By classifying random Ising problems according to 
their classical thermal hardness, we have shown that the D-Wave chip is very susceptible 
to changes in the thermal hardness of random Ising problems.  
4. Theoretical AQC [1,2,3,11,13,16,17,24].  We have developed theoretical 
schemes to improve the performance and boost the practicality of future quantum 
annealing optimizers. In one study, we developed models that combine the modularity of 
the gate model with some of the robustness of adiabatic quantum computation. In another, 
we showed that certain driver Hamiltonians may be used to boost the encodability of 
many constrained optimization problems. We examined the role of tunneling as a 
speedup mechanism in permutation symmetric Hamming weight optimization problems, 
and identified a different mechanism, which we call a “diabatic cascade”, that can result 
in quantum speedups. We developed an open system analogue to the adiabatic theorem of 
quantum mechanics and generalized the Jarzynski equality to the setting of quantum 
channels.  
5.  Quantum annealing error correction [6,9,14,21,22,23]. We have devised error 
correction methods to increase the fault-tolerance of analog quantum annealers and 
reduce their error rates. We have analyzed these methods theoretically using mean field 
models and shown that they work by softening the closing of the quantum critical gap, 
and by allowing certain excited states to encode correct answers. We have devised 
several different quantum annealing correction schemes and worked to optimize the 
various parameters of each method on the D-Wave chips as well as on simulations of 
quantum annealing optimizers. We have also tested each scheme on different types of 
problems, e.g., chains and randomly generated instances. In this effort, we have also 
looked at the effects of analog errors on the performance of experimental quantum 
annealing optimizers and methods to correct these.  
6.  Solving practical problems on experimental quantum annealers [1,6,19]. We 
have studied different schemes for the embedding of practical problems (e.g., 
MAX2SAT), that are not directly embeddable on fixed sparse qubit layouts. By 
combining these with quantum annealing error correction schemes we now have ways to 
embed practical problems of importance of the Government, Industry and Academia on 
experimental quantum annealing devices.  
7.  Quantum annealing beyond speedup. We have begun looking into potential 
quantum enhancements that do not directly correspond to quantum speedups. Since 
quantum annealers are in fact samplers of configurations from distributions that are 
potentially hard to simulate classically, we have worked to leverage this property to 
provide certain quantum advantages such as solution counting and other objectives that 
do not translate directly to quantum speedups. We have also been utilizing the fact that 
quantum annealers provide configurations that are potentially hard to generate classically, 



in order to train machine learning classifiers based on a mapping from machine learning 
to the Ising model.  
 
 

Summary of the most important results 
 
Major Completed Project Milestones: 
• Found signatures of entanglement for D-Wave’s Vesuvius QA processor  
• Studied scaling of computational difficulty for Ising and Max-2-Sat problems with up 

to 108 qubits. 
• Compared the physics of the D-Wave chip to both simulated annealing and simulated 

quantum annealing, demonstrating significant similarity to the latter. 
• Benchmarked upgraded QA chip with over 500 qubits. 
• Tested feasibility of error correction for open system QA. 
• Identified classically difficult problems to look for QA speedup. 
• Demonstrated error correction effectiveness. 
• Demonstrated quantum annealing correction on antiferromagnetic chains, with 

substantial fidelity gains 
• Benchmarked D-Wave Two on random Ising instances 
• Ruled out several classical models for the D-Wave One and demonstrated agreement 

with simulated quantum annealing 
• Studied applications of QA to classically difficult problems. 
• Devised classically hard problems. 
• Developed quantum open system adiabatic theorems. 
• Developed hybrid gate-model/adiabatic formalism. 
• Provided theoretical analysis and explanation for error correction effectiveness. 
• Studied quantum annealing correction for random Ising instances 
• Studied quantum speedup using the D-Wave Two processor 
• Studied the role of tunneling in providing quantum annealing speedup over classical 

algorithms 
• Characterized the effects of classical hardness on the performance of experimental 

quantum annealers. 
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